Lihua $\mathrm{Wu}^{* 1}$, Justin S. Williams ${ }^{2}$, and Teh-hui Kao ${ }^{1,2}$
${ }^{1}$ Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania 16802 USA ${ }^{2}$ Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802 USA.

Background Information

Petunia possesses Solanaceae-type self-incompatibility (SI), which allows pistils to reject self-pollen preventing inbreeding, but accept non-self pollen for outcrossing. Self/non-self recognition is regulated by the polymorphic S-locus (Fig. 1). A single gene at the S-locus, S-RNase, encodes the pistil specificity determinant. The first S-locus-F-box (SLF) gene, named SLF1, was identified by sequencing a $328-\mathrm{kb}$ BAC contig containing $\mathrm{S}_{2}-$ RNase. Pollen transcriptome analysis revealed 16 additional SLF genes linked to the S_{2}-locus (Fig. 1). All 17 SLF genes collectively encode the pollen-specificity determinant.
S_{2}-locus
Figure 1. Schematic diagram of S_{2}-Iocus. Except for the location of S_{2}-SLFF1, the locations of the other $16 S L F$ genes (S_{2}-SLF2 to S_{2}-SLFF1) relative to S_{2}-RNase are yet undetermined.

Figure 2. Using gene markers to screen the $S_{2} S_{2}$ BAC library. (A). Schematics showing the "pooling" strategy used for screening the $S_{2} S_{2}$ BAC library. (B) An example showing the use of the S_{2}-SLFE Specific primers to screen the library, and the identification of a BAC clone 143020 , containing s_{2}-LLF8.

Methods

We used SLF2 to SLF17 as markers to isolate BAC clones from the previously constructed S_{2} library (Fig. 2), and used Illumina Miseq and PacBio SMRT sequencing technology to sequence genomic DNA inserts of these BAC clones, as well as of a previously assembled $881-\mathrm{kb}$ BAC contig containing the $328-\mathrm{kb}$ region. The sequence of each BAC clone was assembled using a combination of Illumina MiSeq and PacBio sequence reads. Illumina read processing and assembly was performed in-house, whereas all PacBlo read quality processing was performed through the SMRT analysis pipeline (v2.3.0) (Fig. 3A).

Figure 3: (A). The S_{2}-locus assembly workflow. (B) Scaffold statistics of successive assembly steps of S_{2}-SLF12. The top panel shows the increase in assembly quality with each successive step, as indicated by comparing the N50 value to the total number of base pairs
assembled (left to right).

Results

A total of 3.1 Mbp (a single contig each for 13 of the 17 SLF genes) were assembled (Table 1), 20.34% of which were repetitive sequences (Fig. 4).

No additional SLF genes were discovered, but 38 additional genes were predicted: 30 of unknown origin and 8 annotated as encoding proteins functioning in pollen germination, pollen tube growth or guidance (Table 2). The sequence of the $S_{6 a}$-locus of P. inflata, extracted from the draft genome sequence, contained 29 of these 38 genes, indicating shared characteristics between different S-loci of the same species.

Uniprot Accession Number			
$\begin{aligned} & \hline \text { CNGC } \\ & \text { CNGC9_ARATH } \end{aligned}$	cyclic nucleotide-gated ion channel	pollen tube growth	Wang et al., (2013)
BECN1	Beclin 1 like protein	ollen germinatio	
$\begin{aligned} & \text { DRM } \\ & \text { DRMI_ARATH } \\ & \hline \end{aligned}$	DNA (cytosine-5)methyltransferase DRM2	DNA methylation	Calarco et al., (2012
$\underset{\text { PDI DATGL }}{\text { PDI }}$	protein disulfide isomerase	pollen tube guid	Wang et al., (200
$\begin{aligned} & \hline \text { R27A } \\ & \text { R27A2_ARATH } \\ & \hline \end{aligned}$	60 S ribosomal protein L27a- 2	protein synthe	Klinge et al., (2011)
$\begin{aligned} & \hline \text { WSD } \\ & \text { WSDI_ARATH } \end{aligned}$	O-acyltransferase	cuticular wax biosynthesis	Let al., (2008)
DUL4	CULLIN-4	ubiquitination SCF complex member	Seo et al., (2014)
$\begin{aligned} & \text { TSS } \\ & \text { TSS_ARATH } \end{aligned}$	TPR-domain suppressor of STIMPY	cell cycle regulator	ylar et al., (201
Table 2. Eight genes identified in the S_{2}-locus of Petunia inflata and annotated as encoding proteins functioning in pollen germination, pollen tube growth, or guidance. .			
S-locus remnants on Chromosome 1 of self-compatible tomato (Solanum lycopersicum) and potato (Solanum tuberosum) cultivars contained the S-RNase remnant and SLF remnants in a sub-centromeric region, but did not contain any of the 38 annotated genes, suggesting the unique feature of the S-locus genes involved in SI.			

Figure 5. Comparative analyses of the Petunia S_{2}-locus and chromosome 1 of both Potato and Tomato. Panel A shows the locations of SLF remnants, as determined by a hiddenmarkov model, in chromosome 1 of Tomato (left), and the locations of the homologs of the 38 genes identified in the Petunia S_{2}-locus. Panel B shows a similar analysis using chromosome 1 of Potato. In both panels, the hit density (genes per 500 Kbp) and locations

Figure 6. Phylogenetic relationships of SLF genes of S_{2}-locus and $S_{6 a}$-locus of Petunia inflata and of Petunia axillaris.

For both S_{2} and $S_{6 a}$ loci, comparison of the upstream and downstream non-coding sequences of different SLF genes (Fig. 6 and Fig. 7) revealed that both recombination and retrotransposition might have played a role in the expansion of SLF genes.

Figure 7. Comparison of non-coding sequences flanking SLF genes. Sequence comparison of 10 kbp upstream (top) and 10 Kbp downstream (bottom) between S_{2}-SLF12 and S_{2}-SLF16 (black line), and between S_{2}-RNase and all 17 SLF genes (red line).

Conclusion

The sequence of the $S_{6 a}$-locus of P. inflata, extracted from the draft genome sequence, contained 29 of the 38 genes, indicating shared characteristics between different S-loci of the same species. S-locus remnants on chromosome 1 of self-compatible tomato (Solanum lycopersicum) and potato (Solanum tuberosum) cultivars contained the S-RNase remnant and SLF remnants in a sub-centromeric region, but did not contain any of the 38 annotated genes, suggesting the unique feature of the S-locus genes involved in SI For both S_{2} and $S_{6 a}$ loci, comparison of the upstream and downstream non-coding sequences of different SLF genes revealed that both recombination and retrotransposition might have played a role in the expansion of SLF genes

Acknowledgements

This work was supported by the National Science Foundation (IOS-1146182 and IOS-164557) to T.-h. K.

References

1. Wang, Y., Tsukamoto, T., Yi, K. W., Wang, X., Huang, S., McCubbin, A. G., Kao, T.h. (2004). Chromosome walking in the Petunia inflata self-incompatibility ($(S$ locus and gene identification in an 881 -kb contig containing S_{2}-RNase. Plan locus and gene identification in
molecular biology, 54(5), $727-742$.
