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Background Information

Self/non-self recognition is regulated by the polymorphic S-locus;
matching of the pollen S-haplotype with one of the two pistil S-
haplotypes results in inhibition of pollen tube growth. The S-locus
houses S-RNase for pistil specificity, and, for both S,- and S;-
haplotypes, 17 S-locus F-box (SLF) genes for pollen specificity. All
SLFs are assembled into similar SCF complexes, containing Rbx1,
pollen-specific Cullinl and Skpl-like protein. According to the
collaborative non-self recognition model, for a given S-haplotype,
each SCF complex interacts with a subset of non-self S-RNases to
mediate their ubiquitination and degradation by the 26S
proteasome. Our lab has used a transgenic assay (Fig. 1) to
determine interaction relationships of SLF proteins and S-RNases.
Among those determined, S,-SLF1 and S;-SLF1 (an allelic pair of
SLF1, differing in 44 amino acids) show differential interactions
with several S-RNases, i.e., S,-SLF1, but not S;-SLF1, interacts with
S;-, S;- and S 5-RNases (Table 1).

Methods

To determine the biochemical basis for differential interactions of S,-SLF1
and S;-SLF1 with S;-RNase, we first divided SLF1 into 3 functional domains
(FD1, FD2 and FD3); generated 4 chimeric genes (F322, F232, F233, and
F332) (Fig. 2); and used a transgenic assay (Fig. 1) to determine whether
each encoded chimeric protein of S,-SLF1 and S;-SLF1 interacts with S;-
RNase. Based on the results (Fig. 3A), we further divided FD3 into 2
subdomains and then into 4 mini-domains (A, B, C, and D); generated 7
chimeric genes (Fig. 2); and similarly examined the ability of the resulting
7 chimeric proteins to interact with S;-RNase (Fig. 3A,B). Protein
structures were modeled using the I-TASSER server, and protein-protein
docking analysis was performed by ClusPro (Fig. 4). FD3s of 4 SLF1s were
aligned using MEGA 6 and ClustalW to identify amino acids conserved
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Figure 2. Transgene constructs for expressing 11 chimeric
proteins of S,-SLF1 and S;-SLF1

Figure 3. 11 chimeric proteins of S,-SLF1 and S;-SLF1. and their ability
to interact with S;-RNase.
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Results

The results shown in Fig. 3 allowed us to first narrow the candidate amino
acids for specific interaction of S,-SLF1 with S;-RNase to the 16 in FD3, and
then to 4 in mini-domain A and 4 in mini-domain D. Molecular modeling of
interactions between S;-RNase and S,-SLF1 revealed that 3 of these 8 are at
the interaction surface (Fig. 4), and all 3 are conserved in S;-SLF1 and S,_-
SLF1 that also interact with S;-RNase (Fig. 5). Three of the chimeric proteins
were used to determine whether FD3 alone contains the amino acids
required for specific interaction of S,-SLF1 with S,-RNase and S,;-RNase.
The results revealed that, unlike the case of S,-SLF1’s interaction with S;-
RNase, FD2 of S,-SLF1 is required for interaction with S,-RNase, and both
FD1 and FD2 are required for interaction with S;5-RNase.

Figure 4. Computational modeling of S,-SLF1 and molecular
docking of S;-RNase onto S,-SLF1, as visualized in PyMOL.
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Figure 5. Alignment of deduced amino acid sequences in FD3s
of three allelic variants of SLF1 that interact with S;-RNase and
of one allelic variant that does not.

Conclusion

Using domain-swapping and molecular modeling we have
narrowed down the candidate amino acids for specific
interaction of S,-SLF1 with S;-RNase from 44 that are different
between S,-SLF1 and S;-SLF1 to 2 in mini-domain A and 1 in mini-
domain D of FD3. In contrast, FD1, or both FD1 and FD2,
contain(s) amino acids required for interactions with S,-RNase or
S,3-RNase, suggesting diversity and complexity of interactions
between SLF proteins and S-RNases.
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